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Objectives. Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and the most common form of dementia in
the elderly. Certain genes have been identified as important clinical risk factors for AD, and technological advances in genomic
research, such as genome-wide association studies (GWAS), allow for analysis of polymorphisms and have been widely applied
to studies of AD. However, shortcomings of GWAS include sensitivity to sample size and hereditary deletions, which result in
low classification and predictive accuracy. Therefore, this paper proposes a novel deep-learning genomics approach and applies
it to multitasking classification of AD progression, with the goal of identifying novel genetic biomarkers overlooked by
traditional GWAS analysis. Methods. In this study, we selected genotype data from 1461 subjects enrolled in the Alzheimer’s
Disease Neuroimaging Initiative, including 622 AD, 473 mild cognitive impairment (MCI), and 366 healthy control (HC)
subjects. The proposed deep-learning genomics (DLG) approach consists of three steps: quality control, coding of single-
nucleotide polymorphisms, and classification. The ResNet framework was used for the DLG model, and the results were
compared with classifications by simple convolutional neural network structure. All data were randomly assigned to one
training/validation group and one test group at a ratio of 9 : 1. And fivefold cross-validation was used. Results. We compared
classification results from the DLG model to those from traditional GWAS analysis among the three groups. For the AD and
HC groups, the accuracy, sensitivity, and specificity of classification were, respectively, 98:78 ± 1:50%, 98:39% ± 2:50%, and
99:44% ± 1:11% using the DLG model, while 71:38% ± 0:63%, 63:13% ± 2:87%, and 85:59% ± 6:66% using traditional GWAS.
Similar results were obtained from the other two intergroup classifications. Conclusion. The DLG model can achieve higher
accuracy and sensitivity when applied to progression of AD. More importantly, we discovered several novel genetic biomarkers
of AD progression, including rs6311 and rs6313 in HTR2A, rs1354269 in NAV2, and rs690705 in RFC3. The roles of these
novel loci in AD should be explored in future research.
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1. Introduction

Alzheimer’s disease (AD) is the most common type of
dementia and is an irreversible, progressive neurological
brain disorder typically beginning with mild memory
decline; in time, it can seriously impair an individual’s ability
to carry out daily activities and lead to loss of autonomy [1,
2]. Mild cognitive impairment (MCI) is a preclinical stage
of AD, in which individuals have no obvious cognitive behav-
ioral symptoms but can show subtle prodromal signs of
dementia [3, 4]. It is widely recognized that early detection
of AD and MCI is essential to slowing progression.

Among factors that influence AD progression, common
genetic variants are major risk factors [5]. Currently, the
development of cheap comprehensive genetic testing of
peripheral blood has brought dramatic changes to studies
of the mechanisms of disease development. In recent
decades, several genes have been associated with AD risk
based on full-genome genotyping arrays using blood samples
[6, 7]. For instance, genomics analysis showed APOE to be
the most strongly associated AD risk gene [8]. In addition,
the CLU, PICALM, SORL1, BIN1, and TOMM40 genes have
also been identified as AD risk factors in the literature [7, 9,
10].

Technological advances [11] have allowed analysis of
millions of nucleotide polymorphisms from thousands of
subjects, including advanced genome-wide association stud-
ies (GWAS) and whole genome sequencing [12–16] that
have increased our understanding of the genetic complexity
of AD susceptibility. For instance, recent GWAS from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) have
related known AD risk genes to differences in rates of brain
atrophy and biomarkers of AD in the cerebrospinal fluid
[17]. Moreover, the International Genomics of Alzheimer’s
Project studied 74046 participants, confirming nearly all of
the previous genetic risk factors and identifying 12 new sus-
ceptibility loci for AD [18]. Therefore, genomics analysis,
especially GWAS analysis, has yielded important advances
in AD research.

However, there are some limitations of GWAS. Firstly,
traditional GWAS intergroup analysis is distorted by differ-
ences in sample sizes [19]. Secondly, traditional GWAS anal-
ysis is strongly dependent on prior knowledge and hand
coding, which requires much time and energy and risks bias
or errors in data entry [16] that can result in poor repeatabil-
ity. Moreover, although traditional GWAS analysis can
assure high specificity of disease screening, accuracy, and
sensitivity are relatively low. In practice, false positives are
preferred over false negatives in order to avoid omissions in
disease screening. Therefore, alternative analytical tools
would help to drive novel hypotheses and models.

Deep-learning algorithms implemented via deep neural
networks can automatically embed computational features
to yield end-to-end models that facilitate discovery of rele-
vant highly complex features [20]. Seminal studies in 2015
demonstrated the applicability of deep neural networks to
DNA sequence data [21, 22]. Deep convolutional neural net-
works (CNNs) have been used in recent studies to predict
various molecular phenotypes on the basis of DNA sequence

alone. Applications include classifying transcription factor
binding sites, predicting molecular phenotypes such as
DNA methylation, microRNA targets, and gene expression
[23–27]. In addition, CNNs have been utilized to call genetic
variants [28] and classify genetic mutations in tumors [29].
Multitask and multimodal models and transfer learning have
also been developed in genomics [30, 31]. In this work, we
hypothesize that deep-learning genomics (DLG) can be
applied to AD and outperform traditional GWAS analysis.
We propose a DLG method to replace traditional GWAS
analysis for multitasking classification of AD progression
and use this approach to seek novel genetic biomarkers of
AD susceptibility.

2. Materials and Methods

The experimental workflow of this study consisted of three
steps as shown in Figure 1. First, we conducted quality con-
trol and SNP genotype coding for SNP genotype data. Sec-
ond, we used the deep residual network ResNet for DLG.
The goal of the deep residual network was to obtain a model
by supervised learning for prediction and extraction of DLG
features. The details of this process are described in detail in
the following sections. Finally, we investigated interpretabil-
ity of the DLG model by applying Gradient-weighted Class
Activation Mapping (Grad-CAM).

2.1. Subjects. Data used in the preparation of this study was
obtained from the ADNI database (http://adni.loni.usc.edu/
). ADNI was launched in 2004 by the National Institute on
Aging, the National Institute of Biomedical Imaging and Bio-
engineering, the Food and Drug Administration, private
pharmaceutical companies, and nonprofit organizations, as
a $60 million, 5-year public-private partnership. In this
study, 1461 individuals (622 AD, 473 MCI, and 366 healthy
controls (HCs)) from the ADNI 1, ADNI 2, and ADNI GO
cohorts of the ADNI database were included. Meanwhile,
the following data from the 1461 ADNI participants was
downloaded: Illumina SNP genotyping data, demographic
information, and diagnosis information. Written informed
consent was obtained from all participants, and the study
was conducted with prior institutional review board
approval. Clinical characteristics, including age, sex, educa-
tion, and Montreal Cognitive Assessment (MoCA) results,
were collected and are listed in Table 1.

The subjects were of age 55-90 (inclusive) years. The
detailed ADNI eligibility criteria are available from http://
adni.loni.usc.edu/methods/documents/. In brief, eligibility
criteria for these participants were as follows: (1) normal sub-
jects: a Clinical Dementia Rating (CDR) of 0, nondepressed,
non-MCI, and nondemented; (2) MCI subjects: a memory
complaint, objective memory loss measured by education
adjusted scores on Wechsler Memory Scale 7/Logical Mem-
ory II, a CDR of 0.5, absence of significant levels of impair-
ment in other cognitive domains, essentially preserved
activities of daily living, and an absence of dementia; (3)
AD: CDR of 0.5 or 1.0 and met the National Institute of
Neurological and Communicative Disorders and Stroke and
Alzheimer’s disease and Related Disorders Association
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criteria for probable AD [32]. Specific psychoactive medica-
tions were excluded.

We investigated two groups of subjects using SNP geno-
type data collected from the ADNI databases. Our training
and validation group contained 560 subjects with AD, 426
subjects with MCI, and 330 HC subjects. We used the SNP
genotype data from this group to establish and test the valid-
ity of our predictive models. Our test group consisted of 62
AD subjects, 47 MCI subjects, and 36 HC controls, and we
used the SNP genotype data to evaluate the diagnostic value
of the predictive models.

2.2. DNA Isolation and SNP Genotyping. SNP genotyping for
more than 620,000 target SNPs was completed on all ADNI

participants using the following protocol. First, a total of 7
mL of blood was taken from each participant and stored in
EDTA-containing Vacutainer tubes, and genomic DNA
was extracted using the QIAamp DNA Blood Maxi Kit fol-
lowing the manufacturer’s protocol. Second, lymphoblastoid
cell lines were established by transforming B lymphocytes
with Epstein-Barr virus [33]. Fourteen genomic DNA sam-
ples were analyzed using the Human 610-Quad BeadChip
according to the manufacturer’s protocols. Before starting
the assay, a 50 ng sample of genomic DNA from each partic-
ipant was examined qualitatively on a 1% Tris-acetate-EDTA
agarose gel to check for degradation. Degraded DNA samples
were excluded from further analysis. Third, samples were
quantitated in triplicate with PicoGreen® reagent and diluted
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Deep learning training
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Figure 1: The flowchart of experimental procedures in this study.

Table 1: Clinical and baseline demographic characteristics of all participants.

Groups Gender (M/F) Age (years) Education MoCA

Training and validation group( n = 1316 )
AD (n = 560) 320/240a 74:42 ± 7:26 15:54 ± 2:85a 17:18 ± 5:05a,b

MCI (n = 426) 255/171c 73:27 ± 7:39 15:98 ± 2:78c 23:62 ± 2:95b,c

HC (n = 330) 163/167a,c 73:80 ± 5:84 16:46 ± 2:54a,c 25:88 ± 2:42a,c

Test group( n = 145 )
AD (n = 62) 41/21a 75:71 ± 7:99 15:55 ± 3:32 13:91 ± 6:82b

MCI (n = 47) 30/17c 75:56 ± 7:94 14:81 ± 3:70 22:75 ± 3:31b

HC (n = 36) 14/22a,c 75:45 ± 3:49 15:58 ± 3:59 —

Data of age and education were presented as mean ± standard deviation. MoCA: Montreal Cognitive Assessment. Group-level two-sample t test is conducted
for age, education, and MoCA. Group-level chi-square test is conducted for gender. ap value HC vs. AD; bp value AD vs. MCI; cp value HC vs. MCI.
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to 50 ng/L in TrisEDTA buffer (10mM Tris, 1mM EDTA,
pH8.0). A total of 200ng of DNA was denatured, neutral-
ized, and amplified for 22 hours at 37°C, and then fragmen-
ted with FMS reagent (Illumina) at 37°C for 1 hour,
precipitated with 2-propanol, and incubated at 4°C for 30
minutes. Fourth, the resulting blue precipitate was resus-
pended in RA1 reagent (Illumina) at 48°C for 1 hour. Sam-
ples were then denatured (95°C for 20 minutes) and
immediately hybridized onto BeadChips at 48°C for 20
hours. The BeadChips were washed and subjected to single
base extension and staining. Finally, the BeadChips were
coated with XC4 reagent (Illumina), desiccated, and imaged
on a BeadArray Reader (Illumina). Illumina BeadStudio 3.2
software was used to generate SNP genotypes from bead
intensity data.

2.3. Quality Control and APOE Genotype. The following
quality control (QC) steps were performed on the 1461 sam-
ples using PLINK v1.07 software. QC processes were con-
ducted separately between the AD and HC groups, the HC
and MCI groups, and the AD and MCI groups. SNPs and
participants were excluded from the analysis if they failed
to meet any of the following criteria [34]: call rate per SNP
≥ 90%; call rate per participant ≥ 90%; gender check; minor
allele frequency ðMAFÞ ≥ 5%; Hardy–Weinberg equilibrium
test of p ≤ 10−6; PI HAT < 0:5. After the QC procedure, the
numbers of features considered for future analysis of each
subject in the paired groups were as follows: 301,388 in the
HC and MCI groups, 301,853 in the HC and MCI groups,
and 301,138 in theMCI and AD groups. The overall genotyp-
ing rate for the remaining dataset was over 99.5%.

In addition, although the APOE gene is an important tar-
get gene in AD research, it was not available for all identified
APOE SNPs on the Illumina array. Therefore, based on the
reported APOE ε2/ε3/ε4 status, the genotypes of the unavail-
able APOE SNPs were added manually to ADNI genotype
data before assessing sample quality.

2.4. SNP Genotype Coding. A single-nucleotide polymorphism
is a DNA sequence variation which occurs when a single nucle-
otide (A, T, C, or G) in the genome differs amongmembers of a
biological species or across paired chromosomes. Based on the
satisfactory ADNI GWAS SNP data of this study, we encoded
SNPs using the following coding scheme: 1 refers to A, 2 refers
to T, 3 refers to C, and 4 refers to G.

2.5. GWAS Analysis. In the multitasking classification of this
study, GWAS analysis, which has emerged as a popular tool
for identifying genetic variants associated with disease risk,
was designed to be compared with deep-learning models.
Standard analysis of a case-control GWAS involves assessing
the association between each individual genotyped SNP and
disease risk. Manhattan and quantile–quantile (Q–Q) plots
were used to visualize the GWAS results. All association
results surviving the significance threshold of p < 1:66e−7
were saved and prepared for subsequent pattern analysis.

2.6. Deep-Learning Genomics Model Based on ResNet. The
DLG model acted as a feature encoder, which had a signifi-
cant impact on classification. In this study, we applied

ResNet, a deep residual network, to the classification between
AD and HC groups, AD and MCI groups, and HC and MCI
groups. Residual units were added to the deep residual net-
work on the basis of CNNs.

A CNN, the most effective type deep-learning model, is
generally composed of three types of layers: convolutional,
pooling, and fully connected. The following describes the
operation of a CNN. The first step is to convolve the input
sequences with a set of filter kernels; all the features active
at different positions after convolution constitute the feature
map [35]. A nonlinear activation function, typically a recti-
fied linear unit (ReLU), is applied on each layer and on the
sum of the feature maps. The operation of the convolutional
layer and ReLU can be expressed as follows:

Cr
n = ReLU 〠

m

vr−1m ∗wr
n + brn

 !
,

ReLU ynð Þ =max 0, ynð Þ,
yn =〠

m

vr−1m ∗wr
n + brn,

8<
:

ð1Þ

where Cr
n is the nth output of the rth convolutional layer, n

represents the number of filters in the rth layer, wr
n and brn

are, respectively, the weight and bias of the nth filter of the
rth layer, vr−1m is the mth output of previous layer r − 1, and ∗

denotes the convolutional operation.
Next, the resulting feature map is processed through the

pooling layer by taking either themean ormaximum activation
over disjoint regions for each channel [20, 35]. By sequential
combination of convolutional and pooling layers, a multilayer
structure is built for feature description. Lastly, the fully con-
nected layers are employed for classification. In total, when
given a training set fXjgj, the learning process of a CNN with

K convolutional layers, whose filter parameters are fWigKi=1,
the bias values are fbigKi=1, and D refers to classification layers,
can be represented as an optimization learning task:

min
Wif gKi=1, bif gKi=1

〠
j

L h Xj

� �
, f Wif gKi=1, bif gKi=1,D
� �� �

, ð2Þ

where L is the loss function that represents the cost differ-
ence between the true label hðXÞ and the predictive label from
the CNN model f ðX, fWigKi=1, fbigKi=1,DÞ.

Based on the CNN model, the greatest advantage of the
ResNet framework lies in adding identity mapping that is
performed by the shortcut connections, the outputs of which
are added to the outputs of the stacked layers [36]. Therefore,
the ResNet addressed the degradation problem and added
neither extra parameters nor computational complexity.
The formula for residual learning was designed as follows:
the desired underlying mapping is denoted as HðxÞ, and
the stacked nonlinear layers were allowed to fit a separate
mapping of ϝðx,ΘÞ =HðxÞ − x. The original mapping was
recast into Fðx,ΘÞ + x. Thus, the overall representation of
the residual block was as follows:
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H xð Þ = ϝ x,Θð Þ + x: ð3Þ

The formulation of ϝðx,ΘÞ + x can be realized by feedfor-
ward neural networks using “shortcut connections.” A deep
residual network can be established by stacking a series of
residual blocks. Specifically, there were two steps in the pro-
cess: forward computation and backward propagation. When
K residual blocks are chosen to stack, the forward propaga-
tion of such a structure can be expressed by

xK = x0 + 〠
K

r=1
ϝ xr−1,Θr−1ð Þ, ð4Þ

where x0 and x1 are the input and the output of the residual
network, respectively, and Θr = fθr,lj1≤l≤Lg is the weight
related to the rth residual block, L being the number of layers
within the block.

Likewise, the back propagation of the overall loss of the
neural network to x0 can be denoted as

∂L
∂x0

=
∂L
∂xK

1 +
∂
∂x0

〠
K

i=1
ϝ xi−1,Θi−1ð Þ

 !
, ð5Þ

where L is the whole loss function of the neural network.
Before modeling using the above procedures, each sub-

ject’s SNP genotype data was cropped after quality control
and mapped to 776 × 776 pixels. The pathology type was
encoded to one-hot, which was the label. Thereafter, in the
training stage, SNP genotype data was fed into the network
to update model parameters via backward propagation with
the Adam algorithm, a first-order gradient-based optimiza-
tion algorithm which has been proven to be computationally
efficient and appropriate for training deep neural networks.
The outputs of the network were used as the classification
results, and the crossentropy of the outputs was calculated
as the loss function. More specifically, the output of the net-
work for each individual SNP could be a binary value. 1 rep-
resented the highest probability of being AD subjects, while 0
represented highest probability of being HC subjects.

We adopted ResNet18 and ResNet34 frameworks in this
study. Meanwhile, we also utilized a traditional CNN model
for the comparative experiments of classification. In the
ResNet models, we set learning rate into 1e−3 and applied
the Adam optimizer to update the model parameters with
the batch size of 8. The maximum number of iterations was
set into 20. Note that we used L2 regularization in this step
to prevent the overfit of our model. For adjusting the CNN
model parameters, we set learning rate into 1e−2 and applied
the Adam optimizer to update the model parameters with the
batch size of 8. The maximum number of iterations was set to
30. Above deep-learning models were processed on a GPU
(graphics processing unit, GTX 1080 Ti acceleration of
PyCharm 3.5).

For investigating the interpretability of the DLG model,
the last convolutional layer of the last res-block was made
transparent in order to extract DLG features by applying
Grad-CAM and two-sample t-tests. For the first step, the last

convolutional layer of the last res-block was chosen to extract
normalized DLG features. Subsequently, using a two-sample
t-test with a false discovery rate [37, 38], we compared the Z
-coefficients of the AD and HC groups, the HC and MCI
groups, and the MCI and AD groups.

2.7. Classification. In this study, the subjects of multitasking
classification were randomly divided into one training group
and one independent test group at a ratio of 9 : 1 as shown in
Table 1. The training group was then used to optimize the
model parameters. We also randomly chose 25% of training
group to form a validation group to guide the choice of
hyperparameters.

On the one hand, we conducted training of several deep-
learning models, including ResNet18, ResNet34, and a tradi-
tional CNN, and compared classification performance in
order to screen for the optimum DLG. On the other hand,
in order to verify the diagnostic capabilities of the DLG
model compared with traditional GWAS analysis, we also
designed comparative trials. Among all the gene indicators,
theta proved to be the most directly related to SNP changes.
APOE ε4 status and the normalized theta-value of the signif-
icant SNP loci found in this study were seen to be genetic pre-
dictors, and we used the support vector machine (SVM) with
the linear kernel 500 times for classification of traditional
GWAS.

To evaluate classification performance, we repeatedly
conducted 5-fold crossvalidation in the training group. Accu-
racy, sensitivity, and specificity were used to evaluate the
results. The mathematical expression of the three parameters
was as follows:

Accuracy = Tn + Tp
Tn + Tp + Fn + Fp

,

Sensitivity =
Tp

Tp + Fn
,

Specif icity =
Tn

Tn + Fp
,

ð6Þ

where Tn, Tp, Fn, and Fp denote, respectively, true nega-
tives, true positives, false negatives, and false positives.

A receiver-operating characteristic (ROC) curve was pro-
duced to intuitively compare the results of the different
approaches, and the area under the curve (AUC) of the
ROC was computed to quantitatively evaluate classification
performance.

2.8. Statistical Analysis. Demographic characteristics were
compared between groups using a two-sample t-test or the
chi-square test. In addition, a two-sample t-test of the
extracted features was applied as a criterion to estimate the
differences in DLG features between AD patients and HCs,
AD patients and MCIs, and HCs and MCIs. All statistical
analyses were performed using SPSS Version 22.0 software
(SPSS Inc., Chicago, IL) and Matlab2016b (Mathworks Inc.,
Sherborn, MA, United States). All p values < 0.05 were con-
sidered significant.
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3. Results

3.1. Outcomes of GWAS Analysis. We carried out case-
control GWAS analysis between the AD and HC groups
and observed two genome-wide significant loci on chromo-
some 19, including rs429358 (APOE, the epsilon 4 marker)
and rs2075650 (TOMM40). Figures 2 and 3 show the result-
ing Manhattan and Q–Q plots, and Table 2 summaries the
SNPs that achieved genome-wide significance. The p value
used to assess significant differences was calculated as p =
0:05/N , where N indicates the number of satisfied SNPs.

3.2. Classification Performance. Table 3 lists the performance
of the different multitasking classificationmethods, including
classification accuracy, sensitivity, specificity, and AUC. Tak-
ing the result of classification between the AD and HC test
group subjects as an example, accuracy, sensitivity, specific-
ity, and AUC were, respectively, 71:38% ± 0:63%, 63:13% ±
2:87%, 85:59% ± 6:66%, and 0.744, for the GWAS analysis,
92:45% ± 8:13%, 93:87 ± 12:26, 90:00 ± 15:97, and 0.915 for
the CNN model, 97:96 ± 1:71, 97:42 ± 3:16, 98:89 ± 1:36,
and 0.980 for ResNet18, and 98:78% ± 1:50%, 98:39% ±
2:50%, 99:44% ± 1:11%, and 0.981 for ResNet34. We found
that the deep-learning model exhibited high accuracy, sensi-
tivity, and specificity, whereas accuracy and sensitivity were
low for the GWAS analysis. Therefore, we concluded that
deep-learning models were superior to traditional GWAS
analysis for classification. And compared with the CNN
model, the results using ResNet were more robust and stable.
These results were the same using the other two group-level
classifications. Based on these results, ResNet34 was chosen
for the DLG model because the observed classification per-
formance was optimal among the several deep-learning
models. A more intuitive comparison is provided by the
ROC curves of the multitasking classification shown in
Figure 4.

3.3. Interpretability of the DLG Model. Setting a threshold of
p < 0:05, more than ten thousand SNP loci showed differ-
ences between the groups, and even the significance of the
most frequently identified loci was below 0.001.

Firstly, we compared the significant SNPs with those pre-
viously identified by GWAS as genetic susceptibility factors.
Almost one hundred SNP loci between AD patients and
HCs were consistent with findings from previous studies.
Likewise, more than one hundred associated SNP loci were
also found between the AD and MCI groups and between
the HC and MCI groups.

Secondly, we sought significant SNP loci among three
classification tasks. The gene regions of sixty-six SNP loci
were shared in different stages of AD progression. Table 4
summarizes the sixty-six shared significant SNP loci among
the three classifications, including, e.g., the well-known
CLU, PICALM, and SORL1 gene regions. For rs11136000
(CLU) in chromosome 8, its p values were 6.63e−4 between
the AD and HC groups, 8.37e−6 between the MCI and HC
groups, and 1.49e−7 between MCI and AD groups. In addi-
tion, three SNP loci, rs543293, rs10501602, and rs3851179,
were found in the PICALM gene region of chromosome 11,
and the p values of rs3851179 for the comparisons of the
three groups were 6.00e−3, 1.06e−6, and 1.51e−20, while the p

Manhattan plot

rs429358
rs2075650

rs17004630
rs7355118rs10497185 rs7644746

rs1048009 rs10039512
rs10947479

−
lo

g 1
0(
p

)

35

10

5

0
1 2 3 4 5 6 7 8 9 11 13 15 18 21

Expected −log10(p)

Figure 2: Manhattan plot of genome-wide association study (GWAS) between AD and HC groups. The y-axis shows the p value (on the –
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values of rs543293 were 4.65e−3, 3.43e−8, and 2.27e−13, and
the p values of rs3851179 were also much less than 0.001.
These results are well supported by previous studies. Other
significant results are detailed in Table 4, and the heatmaps
of significant SNPs in chromosomes 8, 11, and 13 are shown
in Figure 5. The horizontal axis represents major and minor
alleles, and the vertical axis represents the p value of SNP loci
in the chromosomes. We observed some distinct differences,
for example, between rs11136000, rs3851179, and surround-
ing loci.

In addition, except for those in Table 4, there were also
several SNP loci showing an association with AD progression
in their respective classifications. Several also have been
reported and confirmed in previous large-scale GWAS stud-
ies, including APOE, BIN1, CHRM1, and TOMM40 with p
values much less than 0.001. Furthermore, it is notable that
rs6311 and rs6313 in the HTR2A gene region, rs1354269 in
the NAV2 gene, and rs690705 in the RFC3 gene all exhibited
significant differences among the three classifications. For
instance, the p values of rs6311 were 1.96e−5, 2.52e−3, and
1.48e−11 between the respective groups, and the p values of
rs6313 were 3.21e−5, 4.55e−3, and 2.05e−12. An understanding
of the roles of these novel loci in AD requires future study.

All of the information above was deposited in the DisGe-
NET database (http://www.disgenet.org/home/), a discovery

platform containing one of the largest publicly available col-
lections of genes and variants associated with human disease.

4. Discussion

This study used a comparison of the performance of several
different deep-learning models as a basis for proposing a
deep-learning genomics method based on ResNet34. The
classification results indicate that the DLG model offers a
higher diagnostic value than traditional GWAS analysis.

4.1. Outcomes of GWAS Analysis. In GWAS analyses, two
SNPs have been identified at the p < 1:66e−7 significance
level: APOE SNP rs429358 was determined to be the most
significant genetic risk factor for AD. And the second most
significant factor, TOMM40 SNP rs2075650, was found to
be adjacent to the APOE SNP [10]. These results are consis-
tent with previous studies. Although these SNP loci were
identified by GWAS, traditional GWAS analysis suffers from
being influenced by small sample size. Because other com-
mon genetic risk factors may have a much smaller impact
on risk than the APOE gene, novel risk factors present in
small samples may go undetected by GWAS analysis. Several
previous studies have also demonstrated an explicit relation-
ship between sample size and the number of significant

Table 2: SNP summaries reaching genome-wide significance after GWAS.

SNP Position Chr Region or closest gene Major/minor alleles p value OR

rs429358 44908684 19 APOE C/T 5.407e-36 4.348

rs2075650 50087459 19 TOMM40 G/A 7.19e-17 2.737

p < 1:66e−7 for SNPs listed above. Chr: chromosome.

Table 3: Performance of different classification approaches in multitasking classification.

Model Accuracy (%) Sensitivity (%) Specificity (%) AUC

AD and HC groups

GWAS analysis 71:38 ± 0:63 63:13 ± 2:87 85:59 ± 6:66 0.744

CNN model 92:45 ± 8:13 93:87 ± 12:26 90:00 ± 15:97 0.915

ResNet18 97:96 ± 1:71 97:42 ± 3:16 98:89 ± 1:36 0.980

ResNet34 98:78 ± 1:50 98:39 ± 2:50 99:44 ± 1:11 0:981
MCI and HC groups

GWAS analysis 56:99 ± 1:55 96:08 ± 13:92 5:94 ± 21:65 0.510

CNN model 87:47 ± 16:64 99:57 ± 0:85 71:67 ± 38:75 0.852

ResNet18 97:59 ± 3:73 100:00 ± 0:00 94:44 ± 8:61 0.966

ResNet34 99:52 ± 0:60 99:57 ± 0:85 99:44 ± 1:11 0.986

AD and MCI groups

GWAS analysis 58:97 ± 0:00 72:18 ± 0:01 41:54 ± 0:01 0.569

CNN model 86:42 ± 16:02 97:42 ± 4:40 71:91 ± 39:21 0.840

ResNet18 97:80 ± 1:24 97:74 ± 2:41 97:87 ± 3:30 0.972

ResNet34 98:90 ± 1:78 100:00 ± 0:00 97:45 ± 4:13 0.981

The methods are conducted with crossvalidation, and their results are given as mean ± standard deviation.
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differences in traits identified by genome-wide association
studies [18, 19].

4.2. Classification Performance. In this study, in order to con-
struct a deep-learning genomics model, we compared the
performance of several deep-learning classification methods,
including a simple CNNmodel, ResNet18, and ResNet34. As
shown in Table 3, we observed that the results of the deep
residual network were superior to those of a simple CNN,
and in the process of training the model, the ResNet models
exhibited robustness and stability superior to those of CNNs,
and furthermore, ResNet34 was superior to RseNet18. There-
fore, we chose ResNet34 as the final DLG model. More
importantly, we compared the performance of the DLG

model and traditional GWAS analysis under the same condi-
tions and found the classification results of the DLGmodel to
be superior. These results suggest that the deep-learning
algorithm is effective in genome applications and that devel-
opment of deep-learning genomics is worthy of further
exploration.

4.3. Interpretability of the DLG Model. When we interpreted
the DLG model, we found more than one thousand SNP loci
with significant differences between AD patients and HCs,
between the MCI and AD groups, and between the HC and
MCI subjects. As is well known, rs11136000 (CLU),
rs3851179 (PICALM), rs2070045 (SORL1), and rs1699102
(SORL1) have previously been identified as risk factors for
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Figure 4: ROC curve of the performance of different classification approaches in multitasking classification. (a) ROC curve between AD and
HC groups. (b) ROC curve between MCI and HC groups. (c) ROC curve between AD and MCI groups.

8 Behavioural Neurology



Table 4: Shared significant SNPs in AD multitasking classification at p threshold of 0.05.

SNP loci Chr Position Region or closest gene Major/minor alleles
p value

HC vs. AD
p value

HC vs. MCI
p value

AD vs. MCI

rs12091371 1 238671675 FMN2 A/G 0.002227833 0.001509792 2.27881E-09

rs12129547 1 238761878 GREM2 T/C 0.002767757 0.019531535 3.93396E-11

rs1801131 1 11777063 MTHFR C/A 0.000154746 0.007333869 6.18756E-21

rs1801133 1 11778965 MTHFR T/C 0.000192989 0.009566143 5.35043E-21

rs17034806 2 109002337 RANBP2 G/A 0.002645921 0.028425309 3.04207E-10

rs243034 2 60456396 MIR4432HG G/A 0.038985718 0.009492742 1.40355E-08

rs4676049 2 109001689 RANBP2 T/C 0.002215778 0.034993277 4.51555E-10

rs6714710 2 97711518 ZAP70 G/T 0.038909198 0.000768783 7.036E-09

rs1498853 3 69691797 NANa G/A 0.000708166 0.012435495 6.43721E-09

rs2289506 3 101547592 NIT2 T/C 0.000412705 0.004914541 1.07429E-18

rs288496 3 69714739 NANa T/C 0.002172998 0.009409715 4.5892E-09

rs3864101 3 188862449 NANa T/G 0.038241862 0.022506051 6.17468E-08

rs989692 3 156284059 MME T/C 0.00243336 0.016131413 5.91293E-09

rs3796529 4 57492171 REST A/G 0.048696066 0.004826601 7.08294E-25

rs753129 4 56363188 NANa C/T 0.004469287 1.23015E-10 0.013855564

rs1925458 6 23486930 LOC102724749; LOC105374976 T/G 0.000567167 0.000409483 3.10404E-11

rs1980493 6 32471193 BTNL2; TSBP1-AS1 G/A 0.016858811 0.000751139 3.35304E-14

rs2651206 6 43321455 TTBK1 T/C 0.034368574 2.23746E-07 1.97506E-11

rs3734254 6 35502988 PPARD C/T 0.001667544 0.000173601 2.21574E-11

rs3747742 6 41270496 TREML2 C/T 6.7184E-06 3.50103E-05 1.19671E-08

rs6455128 6 62755705 KHDRBS2 A/C 0.008767325 0.00013524 1.45915E-14

rs11767557 7 142819261 EPHA1-AS1 C/T 0.001139233 1.20661E-07 1.96401E-07

rs11771145 7 142820884 EPHA1-AS1 A/G 0.001112928 9.62693E-08 1.8557E-07

rs2227631 7 100556258 SERPINE1 G/A 0.003024669 8.25065E-08 7.24385E-07

rs6461569 7 21502301 SP4 C/T 0.025204688 1.41338E-06 0.001322394

rs6966915 7 12232513 TMEM106B T/C 0.031810788 0.004328052 6.57464E-09

rs11136000 8 27520436 CLU T/C 0.000663408 8.36729E-06 1.48921E-07

rs1975804 8 109360409 EIF3E; LOC105375704 C/T 0.000833268 0.003779274 0.040135088

rs1800977 9 106730271 ABCA1; LOC105376196 T/C 0.013227434 5.61278E-05 4.22923E-14

rs2007153 9 135493640 DBH A/G 3.88584E-05 0.000993637 4.15766E-07

rs2066715 9 106627854 ABCA1 A/G 0.004157538 0.04271672 7.79217E-05

rs2283123 9 135505118 DBH T/C 0.000105332 0.00221966 1.99182E-07

rs2740483 9 106730356 ABCA1; LOC105376196 C/G 0.009678488 6.53287E-05 3.81638E-14

rs4149313 9 106626574 ABCA1 G/A 0.003318514 0.040059489 7.22211E-05

rs4878104 9 89382811 DAPK1 T/C 0.002309724 6.11706E-05 1.46237E-14

rs4548513 10 67710331 CTNNA3 T/C 0.004692221 0.000992064 6.62732E-08

rs7070570 10 67534610 LOC105378340; CTNNA3 G/A 0.000655491 2.34147E-05 1.63609E-06

rs10501602 11 85359037 PICALM G/A 0.004647595 3.42511E-08 2.27238E-13

rs1133174 11 121006965 SORL1 A/G 0.010544659 0.003255318 3.13279E-05

rs12805520 11 85308059 CCDC83 T/C 0.007162755 4.02484E-08 1.90295E-11

rs1354269 11 19330820 NAV2 C/T 0.010833795 6.42781E-08 2.65216E-24

rs1695 11 67109265 GSTP1 G/A 0.006309008 6.1645E-07 2.06528E-23

rs1699102 11 120962172 SORL1 C/T 0.013141699 0.001477832 6.19383E-05

rs17571 11 1739170 CTSD T/C 0.013910348 1.48442E-08 1.58542E-20

rs1946518 11 111540668 IL18 T/G 0.006486007 1.8075E-06 7.21291E-22

rs2070045 11 120953300 SORL1 G/T 0.014545915 0.001140944 7.97485E-05

rs3851179 11 85546288 PICALM A/G 0.00599555 1.06305E-06 1.50773E-20

rs543293 11 85497725 PICALM A/G 0.004782682 1.26328E-07 7.85454E-18
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AD [7, 9, 39]. Notably, they were all included among the
sixty-six significant SNP loci shared in the three classification
tasks in this study (as shown in Table 4 and Figure 5). For
example, previous studies have shown that CLU modulates
Aβ metabolism and is involved in Aβ clearance or acts as a
chaperon for protein degradation [40]. PICALM, as an adap-
tor protein involved in clathrin-mediated endocytosis, regu-
lates amyloid precursor protein (APP) internalization and
subsequent Aβ generation, contributing to brain amyloid
plaque load via its effect on Aβmetabolism [41, 42]. In addi-
tion to the analysis of the above identical SNP loci found
among the three classification tasks, several differential loci
were identified among one or two classification tasks, which
are also consistent with previous research. Rs10194375
(BIN1), a protein that may be associated with tau-mediated
pathology was identified as being significant between the
AD and HC groups and the AD and MCI groups. In addi-
tion, rs2075650 (TOMM40), rs405509 (APOE), and
rs429358 (APOE) were identified as significant between the
HC and MCI groups and the MCI and AD groups. In sum-
mary, the DLGmodel is able to identify differential genomics
in multitasking classification.

Most importantly, in addition to those shown to associate
with AD in the past, we found several new SNP loci, includ-
ing rs6311 (HTR2A), rs6313 (HTR2A), rs1354269 (NAV2),
rs1946518 (IL18), rs1799986 (LRP1), rs690705 (RFC3), and
rs7943454 (LUZP2), whose p values were highly significan-
t(as shown in Table 4). Rs6311 and rs6313 are in the HTR2A
gene region. The HTR2A gene in humans is located on chro-
mosome 13 and consists of exons separated by only two
introns and encodes one of the receptors for serotonin.
According to previous publications, HTR2A has received

much attention in many psychiatric disorders such as mood
disorders, attention deficit hyperactivity disorder, anxiety
disorders, and schizophrenia. On the one hand, some studies
have shown that medications for mood disorders and related
conditions work by blocking 5-HT2A and altering the func-
tion of certain brain circuits. And blocking 5-HTR2A also
seems to improve the effects of some antidepressants [43].
On the other hand, the numbers of the postsynaptic receptor
HTR2A are reduced in the neocortex, and it seems to be
involved in memory via its role in cortical pyramidal cells.
For example, in AD research, HTR2A receptor densities in
the brains of AD subjects were found to be reduced com-
pared with age-matched controls, and the researchers also
found this reduction correlated with the rate of decline of
cognitive scores [44]. Hence, since subjects with AD or mild
cognitive impairment exhibit depression and anxiety to var-
ious degrees, it is worth exploring whether rs6311 and
rs6313 of the HTR2A gene contribute to AD susceptibility.
Another significant locus identified here was rs1354269
located in the NAV2 gene region. The NAV2 gene, which
encodes a member of the neuron navigator gene family, is
highly expressed in brain and is involved in the development
of the nervous system. Hence, the role of the NAV2 gene in
AD is also worthy of future investigation. In addition,
rs690705 of the RFC3 gene region also exhibited a significant
difference in group-level classifications, and its impact on AD
should be examined in the future.

5. Limitations

It is worth noting some limitations of this study. Firstly, only
gene sequences were used as inputs to the DLG classification.

Table 4: Continued.

SNP loci Chr Position Region or closest gene Major/minor alleles
p value

HC vs. AD
p value

HC vs. MCI
p value

AD vs. MCI

rs6265 11 27636492 BDNF; BDNF-AS A/G 0.009460455 1.96067E-07 1.42052E-28

rs7120118 11 47242866 NR1H3 C/T 0.034010947 0.011720707 5.90652E-22

rs7943454 11 24478242 LUZP2 T/C 0.01777448 1.41141E-06 2.00064E-30

rs1799986 12 55821533 LRP1 T/C 0.000875404 8.1991E-06 0.000948497

rs6311 13 46369479 HTR2A T/C 1.95644E-05 0.002519461 1.48261E-11

rs6313 13 46367941 HTR2A T/C 3.21121E-05 0.004551786 2.05426E-12

rs690705 13 33552918 RFC3 G/A 9.15016E-07 0.000123939 0.032894005

rs7989332 13 19948575 CRYL1 A/C 0.001947338 0.038324875 0.017831896

rs10137185 14 63845529 ESR2 T/C 0.000105484 0.00099597 2.08051E-22

rs1065778 15 49307498 MIR4713HG; CYP19A1 A/G 7.88465E-05 1.51664E-05 2.28151E-18

rs2278317 15 31848032 RYR3 G/A 0.019133823 5.18518E-05 4.11594E-07

rs3751592 15 49393870 CYP19A1; MIR7973-1; MIR7973-2 G/A 0.000333452 8.25536E-05 5.77922E-13

rs11075996 16 52415525 FTO T/C 0.021538201 9.92354E-07 0.002856803

rs11075997 16 52416413 FTO T/C 0.023256237 1.14854E-06 0.002461173

rs6499640 16 52327178 FTO G/A 0.016928027 4.22569E-07 0.009148135

rs1050565 17 25600202 BLMH G/A 0.045066195 6.1136E-06 1.19122E-06

rs391300 17 2163008 SRR A/G 0.028223591 1.90848E-06 0.000379785

rs7946 17 17350285 PEMT C/T 0.044709718 0.000412862 2.75631E-18

SNP: single-nucleotide polymorphism. Chr: chromosome. NANa represents uncertain gene of the SNP loci. p value (HC vs. AD) represents the difference value
of each SNP loci between AD and HC groups. All p value are calculated by a two-sample t test for false discovery rate correction.
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Figure 5: Continued.
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Figure 5: Visualization for part of shared significant SNPs in AD multitasking classification at p threshold of 0.05. Rs11136000 (CLU) on
chromosome 8 (a); rs543293, rs10501602, and rs3851179 (PICALM) on chromosome 11 (b); rs2070045, rs1699102, and rs1133174
(SORL1) on chromosome 11 (c); and rs6311 and rs6313 (HTR2A) on chromosome 13 (d) are shown successively from left to right.
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In the future work, we plan to combine gene sequences with
clinical data and brain imaging [45] to facilitate investigation
of the mechanisms of AD progression by deep-learning
genomics and deep-learning radiomics approaches. Sec-
ondly, we only classified information from the ADNI dataset
in this study, so the results could be strengthened by includ-
ing other datasets such as the Chinese populations. Thirdly,
the number of subjects represented in this study may be lim-
iting. Lastly, although this study has demonstrated the feasi-
bility of DLG approach, it will be important to further
explore the interpretability of deep-learning genomics.

6. Conclusions

In conclusion, the current study suggests that the deep-
learning genomics approach is effective for multitasking clas-
sification research on AD progression and outperforms tradi-
tional GWAS analysis. Moreover, the several novel SNP loci
identified in the DLG approach including rs6311 and
rs6313 in HTR2A, rs1354269 in NAV2, and rs690705 in
RFC3 are worthy of further exploration to better understand
the mechanisms of AD.
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